SciPost Phys. 17, 011 (2024) ·
published 11 July 2024
|
· pdf
In condensed matter, Chiral Spin Liquids (CSL) are quantum spin analogs of electronic Fractional Quantum Hall states (in the continuum) or Fractional Chern Insulators (on the lattice). As the latter, CSL are remarkable states of matter, exhibiting topological order and chiral edge modes. Preparing CSL on quantum simulators like cold atom platforms is still an open challenge. Here we propose a simple setup on a finite cluster of spin-1/2 located at the sites of a square lattice. Using a Resonating Valence Bond (RVB) non-chiral spin liquid as initial state on which fast time-modulations of strong nearest-neighbor Heisenberg couplings are applied, following different protocols (out-of-equilibrium quench or semi-adiabatic ramping of the drive), we show the slow emergence of such a CSL phase. An effective Floquet dynamics, obtained from a high-frequency Magnus expansion of the drive Hamiltonian, provides a very accurate and simple framework fully capturing the out-of-equilibrium dynamics. An analysis of the resulting prepared states in term of Projected Entangled Pair states gives further insights on the topological nature of the chiral phase. Finally, we discuss possible applications to quantum computing.
Ravi Teja Ponnaganti, Matthieu Mambrini, Didier Poilblanc
SciPost Phys. 15, 158 (2023) ·
published 12 October 2023
|
· pdf
Within the Projected Entangled Pair State (PEPS) tensor network formalism, a simple update (SU) method has been used to investigate the time evolution of a two-dimensional U(1) critical spin-1/2 spin liquid under Hamiltonian quench [Phys. Rev. B 106, 195132 (2022)]. Here we introduce two different variational frameworks to describe the time dynamics of SU(2)-symmetric translationally-invariant PEPS, aiming to improve the accuracy. In one approach, after using a Trotter-Suzuki decomposition of the time evolution operator in term of two-site elementary gates, one considers a single bond embedded in an environment approximated by a Corner Transfer Matrix Renormalization Group (CTMRG). A variational update of the two tensors on the bond is performed under the application of the elementary gate and then, after symmetrization of the site tensors, the environment is updated. In the second approach, a cluster optimization is performed on a finite (periodic) cluster, maximizing the overlap of the exact time-evolved state with a symmetric finite-size PEPS ansatz. Observables are then computed on the infinite lattice contracting the infinite-PEPS (iPEPS) by CTMRG. We show that the variational schemes outperform the SU method and remain accurate over a significant time interval before hitting the entanglement barrier. Studying the spectrum of the transfer matrix, we find that the asymptotic correlations are very well preserved under time evolution, including the critical nature of the singlet correlations, as expected from the Lieb-Robinson (LR) bound theorem. Consistently, the system (asymptotic) boundary is found to be described by the same Conformal Field Theory of central charge $c = 1$ during time evolution. We also compute the time-evolution of the short distance spin-spin correlations and estimate the LR velocity.
SciPost Phys. 10, 019 (2021) ·
published 28 January 2021
|
· pdf
Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\beta \gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\beta\rightarrow\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.
SciPost Phys. 7, 041 (2019) ·
published 2 October 2019
|
· pdf
We consider a family of SU(2)-symmetric Projected Entangled Paired States (PEPS) on the square lattice, defining colored-Resonating Valence Bond (RVB) states, to describe the quantum disordered phase of the $J_1-J_2$ frustrated Heisenberg model.For $J_2/J_1\sim 0.55$ we show the emergence of critical (algebraic) dimer-dimer correlations -- typical of Rokhsar-Kivelson (RK) points of quantum dimer models on bipartite lattices -- while, simultaneously, the spin-spin correlation length remains short. Our findings are consistent with a spin liquid or a weak Valence Bond Crystal in the neighborhood of an RK point.
Dr Mambrini: "# Responses to the 2nd referee..."
in Submissions | report on Quantum state preparation of topological chiral spin liquids via Floquet engineering