Sharareh Sayyad, Marcus Stålhammar, Lukas Rødland, Flore K. Kunst
SciPost Phys. 15, 200 (2023) ·
published 23 November 2023
|
· pdf
One of the unique features of non-Hermitian (NH) systems is the appearance of NH degeneracies known as exceptional points (EPs). The extensively studied defective EPs occur when the Hamiltonian becomes non-diagonalizable. Aside from this degeneracy, we show that NH systems may host two further types of non-defective degeneracies, namely, non-defective EPs and ordinary (Hermitian) nodal points. The non-defective EPs manifest themselves by i) the diagonalizability of the NH Hamiltonian at these points and ii) the non-diagonalizability of the Hamiltonian along certain intersections of these points, resulting in instabilities in the Jordan decomposition when approaching the points from certain directions. We demonstrate that certain discrete symmetries, namely parity-time, parity-particle-hole, and pseudo-Hermitian symmetry, guarantee the occurrence of both defective and non-defective EPs. We extend this list of symmetries by including the NH time-reversal symmetry in two-band systems. Two-band and four-band models exemplify our findings. Through an example, we further reveal that ordinary nodal points may coexist with defective EPs in NH models when the above symmetries are relaxed.
Marcus Stålhammar, Lukas Rødland, Gregory Arone, Jan Carl Budich, Emil J. Bergholtz
SciPost Phys. 7, 019 (2019) ·
published 8 August 2019
|
· pdf
We extend the list of known band structure topologies to include a large family of hyperbolic nodal links and knots, occurring both in conventional Hermitian systems where their stability relies on discrete symmetries, and in the dissipative non-Hermitian realm where the knotted nodal lines are generic and thus stable towards any small perturbation. We show that these nodal structures, taking the forms of Turk's head knots, appear in both continuum- and lattice models with relatively short-ranged hopping that is within experimental reach. To determine the topology of the nodal structures, we devise an efficient algorithm for computing the Alexander polynomial, linking numbers and higher order Milnor invariants based on an approximate and well controlled parameterisation of the knot.