Thomas Bartsch, Mathew Bullimore, Andrea E. V. Ferrari, Jamie Pearson
SciPost Phys. 17, 067 (2024) ·
published 26 August 2024
|
· pdf
In this paper we continue our investigation of the global categorical symmetries that arise when gauging finite higher groups and their higher subgroups with discrete torsion. The motivation is to provide a common perspective on the construction of non-invertible global symmetries in higher dimensions and a precise description of the associated symmetry categories. We propose that the symmetry categories obtained by gauging higher subgroups may be defined as higher group-theoretical fusion categories, which are built from the projective higher representations of higher groups. As concrete applications we provide a unified description of the symmetry categories of gauge theories in three and four dimensions based on the Lie algebra $\mathfrak{so}(N)$, and a fully categorical description of non-invertible symmetries obtained by gauging a 1-form symmetry with a mixed 't Hooft anomaly. We also discuss the effect of discrete torsion on symmetry categories, based a series of obstructions determined by spectral sequence arguments.
Thomas Bartsch, Mathew Bullimore, Andrea E. V. Ferrari, Jamie Pearson
SciPost Phys. 17, 015 (2024) ·
published 16 July 2024
|
· pdf
The purpose of this paper is to investigate the global categorical symmetries that arise when gauging finite higher groups in three or more dimensions. The motivation is to provide a common perspective on constructions of non-invertible global symmetries in higher dimensions and a precise description of the associated symmetry categories. This paper focusses on gauging finite groups and split 2-groups in three dimensions. In addition to topological Wilson lines, we show that this generates a rich spectrum of topological surface defects labelled by 2-representations and explain their connection to condensation defects for Wilson lines. We derive various properties of the topological defects and show that the associated symmetry category is the fusion 2-category of 2-representations. This allows us to determine the full symmetry categories of certain gauge theories with disconnected gauge groups. A subsequent paper will examine gauging more general higher groups in higher dimensions.