Salvatore D. Pace, Arkya Chatterjee, Shu-Heng Shao
SciPost Phys. 18, 121 (2025) ·
published 8 April 2025
|
· pdf
Dualities of quantum field theories are challenging to realize in lattice models of qubits. In this work, we explore one of the simplest dualities, T-duality of the compact boson CFT, and its realization in quantum spin chains. In the special case of the XX model, we uncover an exact lattice T-duality, which is associated with a non-invertible symmetry that exchanges two lattice U(1) symmetries. The latter symmetries flow to the momentum and winding U(1) symmetries with a mixed anomaly in the CFT. However, the charge operators of the two U(1) symmetries do not commute on the lattice and instead generate the Onsager algebra. We discuss how some of the anomalies in the CFT are nonetheless still exactly realized on the lattice and how the lattice U(1) symmetries enforce gaplessness. We further explore lattice deformations preserving both U(1) symmetries and find a rich gapless phase diagram with special $\mathrm{Spin}(2k)_1$ WZW model points and whose phase transitions all have dynamical exponent $z>1$.
SciPost Phys. 17, 115 (2024) ·
published 16 October 2024
|
· pdf
Generalized symmetries often appear in the form of emergent symmetries in low energy effective descriptions of quantum many-body systems. Non-invertible symmetries are a particularly exotic class of generalized symmetries, in that they are implemented by transformations that do not form a group. Such symmetries appear in large families of gapless states of quantum matter and constrain their low-energy dynamics. To provide a UV-complete description of such symmetries, it is useful to construct lattice models that respect these symmetries exactly. In this paper, we discuss two families of one-dimensional lattice Hamiltonians with finite on-site Hilbert spaces: one with (invertible) $S_3$ symmetry and the other with non-invertible $\mathsf{Rep}(S_3)$ symmetry. Our models are largely analytically tractable and demonstrate all possible spontaneous symmetry breaking patterns of these symmetries. Moreover, we use numerical techniques to study the nature of continuous phase transitions between the different symmetry-breaking gapped phases associated with both symmetries. Both models have self-dual lines, where the models are enriched by so-called intrinsically non-invertible symmetries generated by Kramers-Wannier-like duality transformations. We provide explicit lattice operators that generate these non-invertible self-duality symmetries. We show that the enhanced symmetry at the self-dual lines is described by a 2+1d symmetry-topological-order (SymTO) of type $JK_4\boxtimes \overline{JK}_4$. The condensable algebras of the SymTO determine the allowed gapped and gapless states of the self-dual $S_3$-symmetric and $\mathsf{Rep}(S_3)$-symmetric models.