SciPost Phys. Codebases 51 (2025) ·
published 20 February 2025
|
· pdf
Numerical modeling of fermionic many-body quantum systems presents similar challenges across various research domains, necessitating universal tools, including state-of-the-art machine learning techniques. Here, we introduce SOLAX, a Python library designed to compute and analyze fermionic quantum systems using the formalism of second quantization. SOLAX provides a modular framework for constructing and manipulating basis sets, quantum states, and operators, facilitating the simulation of electronic structures and determining many-body quantum states in finite-size Hilbert spaces. The library integrates machine learning capabilities to mitigate the exponential growth of Hilbert space dimensions in large quantum clusters. The core low-level functionalities are implemented using the recently developed Python library JAX. Demonstrated through its application to the Single Impurity Anderson Model, SOLAX offers a flexible and powerful tool for researchers addressing the challenges of many-body quantum systems across a broad spectrum of fields, including atomic physics, quantum chemistry, and condensed matter physics.
SciPost Phys. Codebases 51-r1.0 (2025) ·
published 20 February 2025
|
· src
Numerical modeling of fermionic many-body quantum systems presents similar challenges across various research domains, necessitating universal tools, including state-of-the-art machine learning techniques. Here, we introduce SOLAX, a Python library designed to compute and analyze fermionic quantum systems using the formalism of second quantization. SOLAX provides a modular framework for constructing and manipulating basis sets, quantum states, and operators, facilitating the simulation of electronic structures and determining many-body quantum states in finite-size Hilbert spaces. The library integrates machine learning capabilities to mitigate the exponential growth of Hilbert space dimensions in large quantum clusters. The core low-level functionalities are implemented using the recently developed Python library JAX. Demonstrated through its application to the Single Impurity Anderson Model, SOLAX offers a flexible and powerful tool for researchers addressing the challenges of many-body quantum systems across a broad spectrum of fields, including atomic physics, quantum chemistry, and condensed matter physics.
Michael Meixner, Henri Menke, Marcel Klett, Sarah Heinzelmann, Sabine Andergassen, Philipp Hansmann, Thomas Schäfer
SciPost Phys. 16, 059 (2024) ·
published 27 February 2024
|
· pdf
The recently proposed center-focused post-processing procedure [Phys. Rev. Res. 2, 033476 (2020)] of cellular dynamical mean-field theory suggests that central sites of large impurity clusters are closer to the exact solution of the Hubbard model than the edge sites. In this paper, we systematically investigate results in the spirit of this center-focused scheme for several cluster sizes up to 8×8 in and out of particle-hole symmetry. First we analyze the metal-insulator crossovers and transitions of the half-filled Hubbard model on a simple square lattice. We find that the critical interaction of the crossover is reduced with increasing cluster sizes and the critical temperature abruptly drops for the 4×4 cluster. Second, for this cluster size, we apply the center-focused scheme to a system with more realistic tight-binding parameters, investigating its pseudogap regime as a function of temperature and doping, where we find doping dependent metal-insulator crossovers, Lifshitz transitions and a strongly renormalized Fermi-liquid regime. Additionally to diagnosing the real space origin of the suppressed antinodal spectral weight in the pseudogap regime, we can infer hints towards underlying charge ordering tendencies.
Submissions
Submissions for which this Contributor is identified as an author:
Prof. Hansmann: "We provide detailed answers to..."
in Submissions | report on Single- and two-particle observables in the Emery model: a dynamical mean-field perspective