SciPost Phys. 18, 192 (2025) ·
published 17 June 2025
|
· pdf
In this study, we introduce a novel family of tensor networks, termed constrained matrix product states (MPS), designed to incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures. These tensor networks are particularly tailored for modeling distributions with support strictly over the feasible space, offering benefits such as reducing the search space in optimization problems, alleviating overfitting, improving training efficiency, and decreasing model size. Central to our approach is the concept of a quantum region, an extension of quantum numbers traditionally used in $U(1)$ symmetric tensor networks, adapted to capture any linear constraint, including the unconstrained scenario. We further develop a novel canonical form for these new MPS, which allow for the merging and factorization of tensor blocks according to quantum region fusion rules and permit optimal truncation schemes. Utilizing this canonical form, we apply an unsupervised training strategy to optimize arbitrary objective functions subject to discrete linear constraints. Our method's efficacy is demonstrated by solving the quadratic knapsack problem, achieving superior performance compared to a leading nonlinear integer programming solver. Additionally, we analyze the complexity and scalability of our approach, demonstrating its potential in addressing complex constrained combinatorial optimization problems.
Alex Meiburg, Jing Chen, Jacob Miller, Raphaƫlle Tihon, Guillaume Rabusseau, Alejandro Perdomo-Ortiz
SciPost Phys. 18, 096 (2025) ·
published 17 March 2025
|
· pdf
Beyond their origin in modeling many-body quantum systems, tensor networks have emerged as a promising class of models for solving machine learning problems, notably in unsupervised generative learning. While possessing many desirable features arising from their quantum-inspired nature, tensor network generative models have previously been largely restricted to binary or categorical data, limiting their utility in real-world modeling problems. We overcome this by introducing a new family of tensor network generative models for continuous data, which are capable of learning from distributions containing continuous random variables. We develop our method in the setting of matrix product states, first deriving a universal expressivity theorem proving the ability of this model family to approximate any reasonably smooth probability density function with arbitrary precision. We then benchmark the performance of this model on several synthetic and real-world datasets, finding that the model learns and generalizes well on distributions of continuous and discrete variables. We develop methods for modeling different data domains, and introduce a trainable compression layer which is found to increase model performance given limited memory or computational resources. Overall, our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
Dr Chen: "Reply to Report 3: We appre..."
in Submissions | report on Generative Learning of Continuous Data by Tensor Networks