SciPost Phys. 15, 207 (2023) ·
published 27 November 2023
|
· pdf
This paper is a follow-up to [J. High Energy Phys. 06, 025 (2020)] in which two-dimensional conformal field theories in the presence of spin structures are studied. In the present paper we define four types of CFTs, distinguished by whether they need a spin structure or not in order to be well-defined, and whether their fields have parity or not. The cases of spin dependence without parity, and of parity without the need of a spin structure, have not, to our knowledge, been investigated in detail so far. We analyse these theories by extending the description of CFT correlators via three-dimensional topological field theory developed in [Nucl. Phys. B 646, 353 (2002)] to include parity and spin. In each of the four cases, the defining data are a special Frobenius algebra $F$ in a suitable ribbon fusion category, such that the Nakayama automorphism of $F$ is the identity (oriented case) or squares to the identity (spin case). We use the TFT to define correlators in terms of $F$ and we show that these satisfy the relevant factorisation and single-valuedness conditions. We allow for world sheets with boundaries and topological line defects, and we specify the categories of boundary labels and the fusion categories of line defect labels for each of the four types. The construction can be understood in terms of topological line defects as gauging a possibly non-invertible symmetry. We analyse the case of a $\mathbb{Z}_2$-symmetry in some detail and provide examples of all four types of CFT, with Bershadsky-Polyakov models illustrating the two new types.
Alvise Bastianello, Benjamin Doyon, Gerard Watts, Takato Yoshimura
SciPost Phys. 4, 045 (2018) ·
published 30 June 2018
|
· pdf
Using generalized hydrodynamics (GHD), we develop the Euler hydrodynamics of classical integrable field theory. Classical field GHD is based on a known formalism for Gibbs ensembles of classical fields, that resembles the thermodynamic Bethe ansatz of quantum models, which we extend to generalized Gibbs ensembles (GGEs). In general, GHD must take into account both solitonic and radiative modes of classical fields. We observe that the quasi-particle formulation of GHD remains valid for radiative modes, even though these do not display particle-like properties in their precise dynamics. We point out that because of a UV catastrophe similar to that of black body radiation, radiative modes suffer from divergences that restrict the set of finite-average observables; this set is larger for GGEs with higher conserved charges. We concentrate on the sinh-Gordon model, which only has radiative modes, and study transport in the domain-wall initial problem as well as Euler-scale correlations in GGEs. We confirm a variety of exact GHD predictions, including those coming from hydrodynamic projection theory, by comparing with Metropolis numerical evaluations.