SciPost Phys. 5, 010 (2018) ·
published 27 July 2018
|
· pdf
We consider free surface dynamics of a two-dimensional incompressible fluid with odd viscosity. The odd viscosity is a peculiar part of the viscosity tensor which does not result in dissipation and is allowed when parity symmetry is broken. For the case of incompressible fluids, the odd viscosity manifests itself through the free surface (no stress) boundary conditions. We first find the free surface wave solutions of hydrodynamics in the linear approximation and study the dispersion of such waves. As expected, the surface waves are chiral and even exist in the absence of gravity and vanishing shear viscosity. In this limit, we derive effective nonlinear Hamiltonian equations for the surface dynamics, generalizing the linear solutions to the weakly nonlinear case. Within the small surface angle approximation, the equation of motion leads to a new class of non-linear chiral dynamics governed by what we dub the {\it chiral} Burgers equation. The chiral Burgers equation is identical to the complex Burgers equation with imaginary viscosity and an additional analyticity requirement that enforces chirality. We present several exact solutions of the chiral Burgers equation. For generic multiple pole initial conditions, the system evolves to the formation of singularities in a finite time similar to the case of an ideal fluid without odd viscosity. We also obtain a periodic solution to the chiral Burgers corresponding to the non-linear generalization of small amplitude linear waves.
Jan de Boer, Jelle Hartong, Niels A. Obers, Watse Sybesma, Stefan Vandoren
SciPost Phys. 5, 003 (2018) ·
published 17 July 2018
|
· pdf
We present a systematic treatment of perfect fluids with translation and rotation symmetry, which is also applicable in the absence of any type of boost symmetry. It involves introducing a fluid variable, the {\em kinetic mass density}, which is needed to define the most general energy-momentum tensor for perfect fluids. Our analysis leads to corrections to the Euler equations for perfect fluids that might be observable in hydrodynamic fluid experiments. We also derive new expressions for the speed of sound in perfect fluids that reduce to the known perfect fluid models when boost symmetry is present. Our framework can also be adapted to (non-relativistic) scale invariant fluids with critical exponent $z$. We show that perfect fluids cannot have Schr\"odinger symmetry unless $z=2$. For generic values of $z$ there can be fluids with Lifshitz symmetry, and as a concrete example, we work out in detail the thermodynamics and fluid description of an ideal gas of Lifshitz particles and compute the speed of sound for the classical and quantum Lifshitz gases.
SciPost Phys. 3, 042 (2017) ·
published 23 December 2017
|
· pdf
The friction of a stationary moving skate on smooth ice is investigated, in particular in relation to the formation of a thin layer of water between skate and ice. It is found that the combination of ploughing and sliding gives a friction force that is rather insensitive for parameters such as velocity and temperature. The weak dependence originates from the pressure adjustment inside the water layer. For instance, high velocities, which would give rise to high friction, also lead to large pressures, which, in turn, decrease the contact zone and so lower the friction. The theory is a combination and completion of two existing but conflicting theories on the formation of the water layer.
SciPost Phys. 2, 014 (2017) ·
published 22 April 2017
|
· pdf
Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrodynamics for integrable systems, taking into account infinitely-many conservation laws. In this note we further develop the theory in various directions. By extending GHD to all commuting flows of the integrable model, we provide a full description of how to take into account weakly varying force fields, temperature fields and other inhomogeneous external fields within GHD. We expect this can be used, for instance, to characterize the non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We further show how the equations of state at the core of GHD follow from the continuity relation for entropy, and we show how to recover Euler-like equations and discuss possible viscosity terms.