Loading [MathJax]/extensions/Safe.js
SciPost logo

SciPost Submission Page

Boundary SymTFT

by Lakshya Bhardwaj, Christian Copetti, Daniel Pajer, Sakura Schäfer-Nameki

Submission summary

Authors (as registered SciPost users): Christian Copetti
Submission information
Preprint Link: https://arxiv.org/abs/2409.02166v2  (pdf)
Date submitted: 2025-02-04 16:48
Submitted by: Copetti, Christian
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
Approach: Theoretical

Abstract

We study properties of boundary conditions (BCs) in theories with categorical (or non-invertible) symmetries. We describe how the transformation properties, or (generalized) charges, of BCs are captured by topological BCs of Symmetry Topological Field Theory (SymTFT), which is a topological field theory in one higher spacetime dimension. As an application of the SymTFT chracterization, we discuss the symmetry properties of boundary conditions for (1+1)d gapped and gapless phases. We provide a number of concrete examples in spacetime dimensions $d=2,3$. We furthermore expand the lattice description for (1+1)d anyon chains with categorical symmetries to include boundary conditions carrying arbitrary 1-charges under the symmetry.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Reports on this Submission

Report #1 by Anonymous (Referee 1) on 2025-3-17 (Invited Report)

Report

See attached pdf-file.

Attachment


Recommendation

Ask for minor revision

  • validity: -
  • significance: -
  • originality: -
  • clarity: -
  • formatting: -
  • grammar: -

Login to report or comment