SciPost Submission Page

De Sitter Entropy as Holographic Entanglement Entropy

by Nikolaos Tetradis

Submission summary

As Contributors: Nikolaos Tetradis
Preprint link: scipost_202010_00021v1
Date accepted: 2020-11-09
Date submitted: 2020-10-22 14:14
Submitted by: Tetradis, Nikolaos
Submitted to: SciPost Physics Proceedings
Proceedings issue: 4th International Conference on Holography, String Theory and Discrete Approach in Hanoi
Academic field: Physics
  • High-Energy Physics - Theory


We review the results of refs. [1, 2], in which the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, is computed using holography. This is achieved through an appropriate slicing of anti-de Sitter space and the implementation of a UV cutoff. When the entangling surface coincides with the horizon of the boundary metric, the entanglement entropy can be identified with the standard gravitational entropy of the space. For this to hold, the effective Newton’s constant must be defined appropriately by absorbing the UV cutoff. Conversely, the UV cutoff can be expressed in terms of the effective Planck mass and the number of degrees of freedom of the dual theory. For de Sitter space, the entropy is equal to the Wald entropy for an effective action that includes the higher-curvature terms associated with the conformal anomaly. The entanglement entropy takes the expected form of the de Sitter entropy, including logarithmic corrections.

Current status:
Publication decision taken: accept

Editorial decision: For Journal SciPost Physics Proceedings: Publish
(status: Editorial decision fixed and (if required) accepted by authors)

Submission & Refereeing History

You are currently on this page

Submission scipost_202010_00021v1 on 22 October 2020

Reports on this Submission

Anonymous Report 1 on 2020-10-30 Invited Report


In this Proceedings, the author reviews published computations performed
by himself and collaborators, of the entanglement entropy in Rindler and deSitter spaces.
The use of a UV cutoff is implemented, which is then absorbed in the process of renormalization by Newton’s constant.
They also give gravitational interpretation of the computed entanglement entropy using holography.
More specifically, a slicing on the AdS has been performed such that the boundary becomes dS.
In this holographic framework the relation between the entanglement entropy and the thermal entropy is examined.

The description of the steps of the computation is comprehensive enough and the text is well written, thus I recommend its publication.

  • validity: -
  • significance: -
  • originality: -
  • clarity: -
  • formatting: -
  • grammar: -

Login to report or comment