SciPost Submission Page
Exact first-order effect of interactions on the ground-state energy of harmonically-confined fermions
by Pierre Le Doussal, Naftali R. Smith, Nathan Argaman
This is not the latest submitted version.
Submission summary
| Authors (as registered SciPost users): | Naftali R. Smith |
| Submission information | |
|---|---|
| Preprint Link: | scipost_202311_00047v1 (pdf) |
| Date submitted: | Nov. 28, 2023, 12:43 p.m. |
| Submitted by: | Naftali R. Smith |
| Submitted to: | SciPost Physics |
| Ontological classification | |
|---|---|
| Academic field: | Physics |
| Specialties: |
|
| Approach: | Theoretical |
Abstract
We consider a system of $N$ spinless fermions, interacting with each other via a power-law interaction $\epsilon/r^n$, and trapped in an external harmonic potential $V(r) = r^2/2$, in $d=1,2,3$ dimensions. For any $0 < n < d+2$, we obtain the ground-state energy $E_N$ of the system perturbatively in $\epsilon$, $E_{N}=E_{N}^{\left(0\right)}+\epsilon E_{N}^{\left(1\right)}+O\left(\epsilon^{2}\right)$. We calculate $E_{N}^{\left(1\right)}$ exactly, assuming that $N$ is such that the ``outer shell'' is filled. For the case of a Coulomb interaction $n=1$, we extract the $N \gg 1$ behavior of $E_{N}^{\left(1\right)}$, focusing on the corrections to the exchange term with respect to the leading-order term that is predicted from the local density approximation applied to the Thomas-Fermi approximate density distribution. The leading correction contains a logarithmic divergence, and is of particular importance in the context of density functional theory. We also study the effect of the interactions on the fermions' spatial density. Finally, we find that our result for $E_{N}^{\left(1\right)}$ significantly simplifies in the case where $n$ is even.
