SciPost logo

SciPost Submission Page

Phases and dynamics of quantum droplets in the crossover to two-dimensions

by Jose Carlos Pelayo, George Bougas, Thom\'{a}s Fogarty, Thomas Busch, Simeon I. Mistakidis

Submission summary

Authors (as registered SciPost users): Jose Carlos Pelayo
Submission information
Preprint Link: scipost_202408_00003v1  (pdf)
Date submitted: 2024-08-05 11:26
Submitted by: Pelayo, Jose Carlos
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Atomic, Molecular and Optical Physics - Theory
Approaches: Theoretical, Computational

Abstract

We explore the ground states and dynamics of ultracold atomic droplets in the crossover region from three to two dimensions by solving the two-dimensional and the quasi two-dimensional extended Gross-Pitaevskii equations numerically and with a variational approach. By systematically comparing the droplet properties, we determine the validity regions of the pure two-dimensional description, and therefore the dominance of the logarithmic nonlinear coupling, as a function of the sign of the averaged mean-field interactions and the size of the transverse confinement. One of our main findings is that droplets can become substantially extended when their binding energies become small upon transitioning from negative-to-positive averaged mean-field interactions. To explore fundamental dynamical properties in the cross-over region, we study interaction quenches and show that the droplets perform a periodic breathing motion for modest quench strengths, while larger quench amplitudes lead to continuous expansion exhibiting density ring structures. We also showcase that it is possible to form complex bulk and surface density patterns in anisotropic geometries following the quench. Since we are working with realistic parameters, our results can directly facilitate future experimental realizations.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment