Multiscale response of ionic systems to a spatially varying electric field

Jesper Schmidt Hansen

SciPost Phys. 2, 017 (2017) · published 27 May 2017

Abstract

In this paper the response of ionic systems subjected to a spatially varying electric field is studied. Following the Nernst-Planck equation, two forces driving the mass flux are present, namely, the concentration gradient and the electric potential gradient. The mass flux due to the concentration gradient is modelled through Fick's law, and a new constitutive relation for the mass flux due to the potential gradient is proposed. In the regime of low screening the response function due to the potential gradient is closely related to the ionic conductivity. In the large screening regime, on the other hand, the response function is governed by the charge-charge structure. Molecular dynamics simulations are conducted and the two wave vector dependent response functions are evaluated for models of a molten salt and an ionic liquid. In the low screening regime the response functions show same wave vector dependency, indicating that it is the same underlying physical processes that govern the response. In the screening regime the wave vector dependency is very different and, thus, the overall response is determined by different processes. This is in agreement with the observed failure of the Nernst-Einstein relation.


Ontology / Topics

See full Ontology or Topics database.

Ionic liquids Ionic systems Molecular dynamics (MD) Nernst-Einstein relation Nernst-Planck equation

Author / Affiliation: mappings to Contributors and Organizations

See all Organizations.