Hopf exceptional points
Tsuneya Yoshida, Emil J. Bergholtz, Tomáš Bzdušek
SciPost Phys. 20, 001 (2026) · published 7 January 2026
- doi: 10.21468/SciPostPhys.20.1.001
- Submissions/Reports
-
Abstract
Exceptional points at which eigenvalues and eigenvectors of non-Hermitian matrices coalesce are ubiquitous in the description of a wide range of platforms from photonic or mechanical metamaterials to open quantum systems. Here, we introduce a class of Hopf exceptional points (HEPs) that are protected by the Hopf invariants (including the higher-dimensional generalizations) and which exhibit phenomenology sharply distinct from conventional exceptional points. Saliently, owing to their $\mathbb{Z}_2$ topological invariant related to the Witten anomaly, three-fold HEPs and symmetry-protected five-fold HEPs act as their own \enquote{antiparticles}. Furthermore, based on higher homotopy groups of spheres, we predict the existence of multifold HEPs and symmetry-protected HEPs with non-Hermitian topology captured by a range of finite groups (such as $\mathbb{Z}_3$, $\mathbb{Z}_{12}$, or $\mathbb{Z}_{24}$) beyond the periodic table of Bernard-LeClair symmetry classes.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Tsuneya Yoshida,
- 3 Emil Bergholtz,
- 4 Tomáš Bzdušek
- 1 Eidgenössische Technische Hochschule Zürich / Swiss Federal Institute of Technology in Zurich (ETH) [ETH Zurich]
- 2 京都大学 / Kyoto University
- 3 Stockholm University [Univ Stockholm]
- 4 Universität Zürich / University of Zurich [UZH]
- Göran Gustafssons Stiftelser
- 日本学術振興会 / Japan Society for the Promotion of Science [JSPS]
- Knut och Alice Wallenbergs Stiftelse / Knut and Alice Wallenberg Foundation
- Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung / Swiss National Science Foundation [SNF]
- Yamada Science Foundation
