Anomalies of coset non-invertible symmetries
Po-Shen Hsin, Ryohei Kobayashi, Carolyn Zhang
SciPost Phys. 20, 006 (2026) · published 13 January 2026
- doi: 10.21468/SciPostPhys.20.1.006
- Submissions/Reports
-
Abstract
Anomalies of global symmetries provide important information on the quantum dynamics. We show the dynamical constraints can be organized into three classes: genuine anomalies, fractional topological responses, and integer responses that can be realized in symmetry-protected topological (SPT) phases. Coset symmetry can be present in many physical systems including quantum spin liquids, and the coset symmetry can be a non-invertible symmetry. We introduce twists in coset symmetries, which modify the fusion rules and the generalized Frobenius-Schur indicators. We call such coset symmetries twisted coset symmetries, and they are labeled by the quadruple $(G,K,\omega_{D+1},\alpha_D)$ in $D$ spacetime dimensions where $G$ is a group and $K\subset G$ is a discrete subgroup, $\omega_{D+1}$ is a $(D+1)$-cocycle for group $G$, and $\alpha_{D}$ is a $D$-cochain for group $K$. We present several examples with twisted coset symmetries using lattice models and field theory, including both gapped and gapless systems (such as gapless symmetry-protected topological phases). We investigate the anomalies of general twisted coset symmetry, which presents obstructions to realizing the coset symmetry in (gapped) symmetry-protected topological phases. We show that finite coset symmetry $G/K$ becomes anomalous when $G$ cannot be expressed as the bicrossed product $G=H\Join K$, and such anomalous coset symmetry leads to symmetry-enforced gaplessness in generic spacetime dimensions. We illustrate examples of anomalous coset symmetries with $A_5/\Z_2$ symmetry, with realizations in lattice models.
