Efficient and scalable path integral Monte Carlo simulations with worm-type updates for Bose-Hubbard and XXZ models
Nicolas Sadoune, Lode Pollet
SciPost Phys. Codebases 9 (2022) · published 29 November 2022
- doi: 10.21468/SciPostPhysCodeb.9
- live repo (external)
- Submissions/Reports
This Publication is part of a bundle
When citing, cite all relevant items (e.g. for a Codebase, cite both the article and the release you used).
DOI | Type | |
---|---|---|
10.21468/SciPostPhysCodeb.9 | Article | |
10.21468/SciPostPhysCodeb.9-r1.0 | Codebase release |
Abstract
We present a novel and open-source implementation of the worm algorithm, which is an algorithm to simulate Bose-Hubbard and sign-positive spin models using a path-integral representation of the partition function. The code can deal with arbitrary lattice structures and assumes spin-exchange terms, or bosonic hopping amplitudes, between nearest-neighbor sites, and local or nearest-neighbor interactions of the density-density type. We explicitly demonstrate the near-linear scaling of the algorithm with respect to the system volume and the inverse temperature and analyze the autocorrelation times in the vicinity of a $U(1)$ second order phase transition. The code is written in such a way that extensions to other lattice models as well as closely-related sign-positive models can be done straightforwardly on top of the provided framework.
Cited by 6
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Nicolas Sadoune,
- 1 2 Lode Pollet
- 1 Ludwig-Maximilians-Universität München / Ludwig Maximilian University of Munich [LMU]
- 2 Munich Center for Quantum Science and Technology [MCQST]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- FP7 Seventh Framework Programme (FP7) (through Organization: European Commission [EC])