Kicking it off(-shell) with direct diffusion
Anja Butter, Tomáš Ježo, Michael Klasen, Mathias Kuschick, Sofia Palacios Schweitzer, Tilman Plehn
SciPost Phys. Core 7, 064 (2024) · published 16 September 2024
- doi: 10.21468/SciPostPhysCore.7.3.064
- Submissions/Reports
Abstract
Off-shell effects in large LHC backgrounds are crucial for precision predictions and, at the same time, challenging to simulate. We present a novel method to transform high-dimensional distributions based on a diffusion neural network and use it to generate a process with off-shell kinematics from the much simpler on-shell one. Applied to a toy example of top pair production at LO we show how our method generates off-shell configurations fast and precisely, while reproducing even challenging on-shell features.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Anja Butter,
- 3 Tomas Jezo,
- 3 Michael Klasen,
- 3 Mathias Kuschick,
- 1 Sofia Palacios Schweitzer,
- 1 Tilman Plehn
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Sorbonne Paris Cité [PRES]
- 3 Westfälische Wilhelms-Universität Münster / University of Münster [WWU]
Funders for the research work leading to this publication
- Baden-Württemberg Stiftung
- Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research [BMBF]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Institut National de Physique Nucléaire et de Physique des Particules [IN2P3]
- Sorbonne Université / Sorbonne University