Jintae Kim, Yun-Tak Oh, Daniel Bulmash, Jung Hoon Han
SciPost Phys. 18, 110 (2025) ·
published 25 March 2025
|
· pdf
Some topological lattice models in two spatial dimensions exhibit intricate lattice size dependence in their ground state degeneracy (GSD). This and other features such as the position-dependent anyonic excitations are manifestations of UV/IR mixing. In the first part of this paper, we perform an exact calculation of the topological entanglement entropy (TEE) for a specific model, the rank-2 toric code. This analysis includes both contractible and non-contractible boundaries, with the minimum entropy states identified specifically for non-contractible boundaries. Our results show that TEE for a contractible boundary remains independent of lattice size, whereas TEE for non-contractible boundaries, similarly to the GSD, shows intricate lattice-size dependence. In the latter part of the paper we focus on the fact that the rank-2 toric code is an example of a translation symmetry-enriched topological phase, and show that viewing distinct lattice size as a consequence of different translation symmetry defects can explain both our TEE results and the GSD of the rank-2 toric code. Our work establishes the translation symmetry defect framework as a robust description of the UV/IR mixing in topological lattice models.
SciPost Phys. 15, 235 (2023) ·
published 12 December 2023
|
· pdf
Multipole symmetries are of interest in multiple contexts, from the study of fracton phases, to nonergodic quantum dynamics, to the exploration of new hydrodynamic universality classes. However, prior explorations have focused on continuum systems or hypercubic lattices. In this work, we systematically explore multipole symmetries on arbitrary crystal lattices. We explain how, given a crystal structure (specified by a space group and the occupied Wyckoff positions), one may systematically construct all consistent multipole groups. We focus on two-dimensional crystal structures for simplicity, although our methods are general and extend straightforwardly to three dimensions. We classify the possible multipole groups on all two-dimensional Bravais lattices, and on the Kagome and breathing Kagome crystal structures to illustrate the procedure on general crystal lattices. Using Wyckoff positions, we provide an in-principle classification of all possible multipole groups in any space group. We explain how, given a valid multipole group, one may construct a consistent lattice Hamiltonian and a low-energy field theory. We then explore the physical consequences, beginning by generalizing certain results originally obtained on hypercubic lattices to arbitrary crystal structures. Next, we identify two apparently novel phenomena: an emergent, robust subsystem symmetry on the triangular lattice, and an exact multipolar symmetry on the breathing Kagome lattice that does not include conservation of charge (monopole), but instead conserves a vector charge. This makes clear that there is new physics to be found by exploring the consequences of multipolar symmetries on arbitrary lattices, and this work provides the map for the exploration thereof, as well as guiding the search for emergent multipolar symmetries and the attendant exotic phenomena in real materials based on nonhypercubic lattices.