Vittorio Vitale, Andreas Elben, Richard Kueng, Antoine Neven, Jose Carrasco, Barbara Kraus, Peter Zoller, Pasquale Calabrese, Benoit Vermersch, Marcello Dalmonte
SciPost Phys. 12, 106 (2022) ·
published 25 March 2022
|
· pdf
When a quantum system initialized in a product state is subjected to either coherent or incoherent dynamics, the entropy of any of its connected partitions generically increases as a function of time, signalling the inevitable spreading of (quantum) information throughout the system. Here, we show that, in the presence of continuous symmetries and under ubiquitous experimental conditions, symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics: in given quantum number sectors, entropy decreases as a function of time, signalling dynamical purification. Such dynamical purification bridges between two distinct short and intermediate time regimes, characterized by a log-volume and log-area entropy law, respectively. It is generic to symmetric quantum evolution, and as such occurs for different partition geometry and topology, and classes of (local) Liouville dynamics. We then develop a protocol to measure symmetry-resolved entropies and negativities in synthetic quantum systems based on the random unitary toolbox, and demonstrate the generality of dynamical purification using experimental data from trapped ion experiments [Brydges et al., Science 364, 260 (2019)]. Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems, and, in particular, in noisy-intermediate scale quantum devices.
Antoine Neven, David Gunn, Martin Hebenstreit, Barbara Kraus
SciPost Phys. 11, 042 (2021) ·
published 30 August 2021
|
· pdf
Understanding multipartite entanglement is vital, as it underpins a wide range of phenomena across physics. The study of transformations of states via Local Operations assisted by Classical Communication (LOCC) allows one to quantitatively analyse entanglement, as it induces a partial order in the Hilbert space. However, it has been shown that, for systems with fixed local dimensions, this order is generically trivial, which prevents relating multipartite states to each other with respect to any entanglement measure. In order to obtain a non-trivial partial ordering, we study a physically motivated extension of LOCC: multi-state LOCC. Here, one considers simultaneous LOCC transformations acting on a finite number of entangled pure states. We study both multipartite and bipartite multi-state transformations. In the multipartite case, we demonstrate that one can change the stochastic LOCC (SLOCC) class of the individual initial states by only applying Local Unitaries (LUs). We show that, by transferring entanglement from one state to the other, one can perform state conversions not possible in the single copy case; provide examples of multipartite entanglement catalysis; and demonstrate improved probabilistic protocols. In the bipartite case, we identify numerous non-trivial LU transformations and show that the source entanglement is not additive. These results demonstrate that multi-state LOCC has a much richer landscape than single-state LOCC.
Dr Neven: "We are grateful to the referee..."
in Submissions | report on Local Transformations of Multiple Multipartite States