Davide Venturelli, Leticia F. Cugliandolo, Grégory Schehr, Marco Tarzia
SciPost Phys. 14, 110 (2023) ·
published 12 May 2023
|
· pdf
The generalized Rosenzweig-Porter model with real (GOE) off-diagonal entries arguably constitutes the simplest random matrix ensemble displaying a phase with fractal eigenstates, which we characterize here by using replica methods. We first derive analytical expressions for the average spectral density in the limit in which the size $N$ of the matrix is large but finite. We then focus on the number of eigenvalues in a finite interval and compute its cumulant generating function as well as the level compressibility, i.e., the ratio of the first two cumulants: these are useful tools to describe the local level statistics. In particular, the level compressibility is shown to be described by a universal scaling function, which we compute explicitly, when the system is probed over scales of the order of the Thouless energy. Interestingly, the same scaling function is found to describe the level compressibility of the complex (GUE) Rosenzweig-Porter model in this regime.
We confirm our results with numerical tests.
Xhek Turkeshi, Damien Barbier, Leticia F. Cugliandolo, Marco Schirò, Marco Tarzia
SciPost Phys. 12, 189 (2022) ·
published 9 June 2022
|
· pdf
We discuss and compare two recently proposed toy models for anomalous transport and Griffiths effects in random systems near the Many-Body Localization transitions: the random dephasing model, which adds thermal inclusions in an Anderson Insulator as local Markovian dephasing channels that heat up the system, and the random Gaussian Orthogonal Ensemble (GOE) approach which models them in terms of ensembles of random regular graphs. For these two settings we discuss and compare transport and dissipative properties and their statistics. We show that both types of dissipation lead to similar Griffiths-like phenomenology, with the GOE bath being less effective in thermalising the system due to its finite bandwidth. We then extend these models to the case of a quasi-periodic potential as described by the André-Aubry-Harper model coupled to random thermal inclusions, that we show to display, for large strength of the quasiperiodic potential, a similar phenomenology to the one of the purely random case. In particular, we show the emergence of subdiffusive transport and broad statistics of the local density of states, suggestive of Griffiths like effects arising from the interplay between quasiperiodic localization and random coupling to the baths.
Giulio Biroli, Charlotte Rulquin, Gilles Tarjus, Marco Tarzia
SciPost Phys. 1, 007 (2016) ·
published 25 October 2016
|
· pdf
We study the role of fluctuations on the thermodynamic glassy properties of plaquette spin models, more specifically on the transition involving an overlap order parameter in the presence of an attractive coupling between different replicas of the system. We consider both short-range fluctuations associated with the local environment on Bethe lattices and long-range fluctuations that distinguish Euclidean from Bethe lattices with the same local environment. We find that the phase diagram in the temperature-coupling plane is very sensitive to the former but, at least for the $3$-dimensional (square pyramid) model, appears qualitatively or semi-quantitatively unchanged by the latter. This surprising result suggests that the mean-field theory of glasses provides a reasonable account of the glassy thermodynamics of models otherwise described in terms of the kinetically constrained motion of localized defects and taken as a paradigm for the theory of dynamic facilitation. We discuss the possible implications for the dynamical behavior.