SciPost Phys. Core 6, 054 (2023) ·
published 11 August 2023
|
· pdf
We study perfect matchings, or close-packed dimer coverings, of finite sections of the eleven Archimedean lattices and give a constructive proof showing that any two perfect matchings can be transformed into each other using small sets of local ring-exchange moves. This result has direct consequences for formulating quantum dimer models with a resonating valence bond ground state, i.e., a superposition of all dimer coverings compatible with the boundary conditions. On five of the composite Archimedean lattices we supplement the sufficiency proof with translationally invariant reference configurations that prove the strict necessity of the sufficient terms with respect to ergodicity. We provide examples of and discuss frustration-free deformations of the quantum dimer models on two tripartite lattices.
SciPost Phys. 15, 044 (2023) ·
published 2 August 2023
|
· pdf
We generalize the area-law violating models of Fredkin and Motzkin spin chains into two dimensions by building quantum six- and nineteen-vertex models with correlated interactions. The Hamiltonian is frustration free, and its projectors generate ergodic dynamics within the subspace of height configuration that are non negative. The ground state is a volume- and color-weighted superposition of classical bi-color vertex configurations with non-negative heights in the bulk and zero height on the boundary. The entanglement entropy between subsystems has a phase transition as the $q$-deformation parameter is tuned, which is shown to be robust in the presence of an external field acting on the color degree of freedom. The ground state undergoes a quantum phase transition between area- and volume-law entanglement phases with a critical point where entanglement entropy scales as a function $L\log L$ of the linear system size $L$. Intermediate power law scalings between $L\log L$ and $L^2$ can be achieved with an inhomogeneous deformation parameter that approaches 1 at different rates in the thermodynamic limit. For the $q>1$ phase, we construct a variational wave function that establishes an upper bound on the spectral gap that scales as $q^{-L^3/8}$.
Dr Zhang: "We thank the referee for caref..."
in Submissions | report on Ergodic Archimedean dimers