SciPost Phys. 15, 015 (2023) ·
published 19 July 2023
|
· pdf
We investigate the probability distribution of Chern numbers (quantum Hall conductance integers) for a parametric version of the GUE random matrix ensemble, which is a model for a chaotic or disordered system. The numerically-calculated single-band Chern number statistics agree well with predictions based on an earlier study [O. Gat and M. Wilkinson, SciPost Phys., 10, 149, (2021)] of the statistics of the quantum adiabatic curvature, when the parametric correlation length is small. However, contrary to an earlier conjecture, we find that the gap Chern numbers are correlated, and that the correlation is weak but slowly-decaying. Also, the statistics of weighted sums of Chern numbers differs markedly from predictions based upon the hypothesis that gap Chern numbers are uncorrelated. All our results are consistent with the universality hypothesis described in the earlier paper, including in the previously unstudied regime of large correlation length, where the Chern statistics is highly non-Gaussian.
Franz Paul Spitzner, Johannes Zierenberg, Wolfhard Janke
SciPost Phys. 5, 062 (2018) ·
published 13 December 2018
|
· pdf
The formation and dissolution of a droplet is an important mechanism related to various nucleation phenomena. Here, we address the droplet formation-dissolution transition in a two-dimensional Lennard-Jones gas to demonstrate a consistent finite-size scaling approach from two perspectives using orthogonal control parameters. For the canonical ensemble, this means that we fix the temperature while varying the density and vice versa. Using specialised parallel multicanonical methods for both cases, we confirm analytical predictions at fixed temperature (rigorously only proven for lattice systems) and corresponding scaling predictions from expansions at fixed density. Importantly, our methodological approach provides us with reference quantities from the grand canonical ensemble that enter the analytical predictions. Our orthogonal finite-size scaling setup can be exploited for theoretical and experimental investigations of general nucleation phenomena - if one identifies the corresponding reference ensemble and adapts the theory accordingly. In this case, our numerical approach can be readily translated to the corresponding ensembles and thereby proves very useful for numerical studies of equilibrium droplet formation, in general.