SciPost Phys. Lect. Notes 4 (2018) ·
published 27 September 2018
|
· pdf
Free fermion systems enjoy a privileged place in physics. With their simple structure they can explain a variety of effects, ranging from insulating and metallic behaviours to superconductivity and the integer quantum Hall effect. Interactions, e.g. in the form of Coulomb repulsion, can dramatically alter this picture by giving rise to emerging physics that may not resemble free fermions. Examples of such phenomena include high-temperature superconductivity, fractional quantum Hall effect, Kondo effect and quantum spin liquids. The non-perturbative behaviour of such systems remains a major obstacle to their theoretical understanding that could unlock further technological applications. Here, we present a pedagogical review of "interaction distance" [Nat. Commun. 8, 14926 (2017)] -- a systematic method that quantifies the effect interactions can have on the energy spectrum and on the quantum correlations of generic many-body systems. In particular, the interaction distance is a diagnostic tool that identifies the emergent physics of interacting systems. We illustrate this method on the simple example of a one-dimensional Fermi-Hubbard dimer.
SciPost Phys. Lect. Notes 3 (2018) ·
published 27 September 2018
|
· pdf
I gently introduce the diagrammatic birdtrack notation, first for vector algebra and then for permutations. After moving on to general tensors I review some recent results on Hermitian Young operators, gluon projectors, and multiplet bases for SU(N) colour space.
SciPost Phys. Lect. Notes 2 (2018) ·
published 11 June 2018
|
· pdf
These notes are intended as a detailed discussion on how to implement the diagrammatic Monte Carlo method for a physical system which is technically simple and where it works extremely well, namely the Fröhlich polaron problem. Sampling schemes for the Green function as well as the self-energy in the bare and skeleton (bold) expansion are disclosed in full detail. We discuss the Monte Carlo updates, possible implementations in terms of common data structures, as well as techniques on how to perform the Fourier transforms for functions with discontinuities. Control over the variety of parameters, especially in the bold scheme, is demonstrated. Sample codes are made available online along with extensive documentation. Towards the end, we discuss various extensions of the method and their applications. After working through these notes, the reader will be well equipped to explore the richness of the diagrammatic Monte Carlo method for quantum many-body systems.
SciPost Phys. Lect. Notes 1 (2018) ·
published 10 June 2018
|
· pdf
We provide a brief but self-contained review of conformal field theory on the Riemann sphere. We first introduce general axioms such as local conformal invariance, and derive Ward identities and BPZ equations. We then define minimal models and Liouville theory by specific axioms on their spectrums and degenerate fields. We solve these theories by computing three- and four-point functions, and discuss their existence and uniqueness.