SciPost logo

Publishing statistical models: Getting the most out of particle physics experiments

Kyle Cranmer, Sabine Kraml, Harrison B. Prosper, Philip Bechtle, Florian U. Bernlochner, Itay M. Bloch, Enzo Canonero, Marcin Chrzaszcz, Andrea Coccaro, Jan Conrad, Glen Cowan, Matthew Feickert, Nahuel Ferreiro Iachellini, Andrew Fowlie, Lukas Heinrich, Alexander Held, Thomas Kuhr, Anders Kvellestad, Maeve Madigan, Farvah Mahmoudi, Knut Dundas Morå, Mark S. Neubauer, Maurizio Pierini, Juan Rojo, Sezen Sekmen, Luca Silvestrini, Veronica Sanz, Giordon Stark, Riccardo Torre, Robert Thorne, Wolfgang Waltenberger, Nicholas Wardle, Jonas Wittbrodt

SciPost Phys. 12, 037 (2022) · published 25 January 2022

Abstract

The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases -- including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits -- we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.

Cited by 25

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication