SciPost Phys. 15, 226 (2023) ·
published 6 December 2023
|
· pdf
We establish the existence of a deformation of the usual Carter constant which is conserved along the motion in a fixed Kerr background of a spinning test body possessing the spin-induced quadrupole coupling of a black hole. The conservation holds perturbatively up to second order in the test body's spin. This constant of motion is obtained through the explicit resolution of the conservation constraint equations, employing covariant algebraic and differential relations amongst covariant building blocks of the Kerr background. For generic spin-induced quadrupole couplings, which describe compact objects such as neutron stars, we obtain a no-go result on the existence of such a conserved quantity.
SciPost Phys. 12, 012 (2022) ·
published 10 January 2022
|
· pdf
We revisit the conserved quantities of the Mathisson-Papapetrou-Tulczyjew equations describing the motion of spinning particles on a fixed background. Assuming Ricci-flatness and the existence of a Killing-Yano tensor, we demonstrate that besides the two non-trivial quasi-conserved quantities, i.e. conserved at linear order in the spin, found by R\"udiger, non-trivial quasi-conserved quantities are in one-to-one correspondence with non-trivial mixed-symmetry Killing tensors. We prove that no such stationary and axisymmetric mixed-symmetry Killing tensor exists on the Kerr geometry. We discuss the implications for the motion of spinning particles on Kerr spacetime where the quasi-constants of motion are shown not to be in complete involution.
Mr Druart: "We thank the referee for his/h..."
in Submissions | report on Complete set of quasi-conserved quantities for spinning particles around Kerr