P. Naldesi, J. Polo, V. Dunjko, H. Perrin, M. Olshanii, L. Amico, A. Minguzzi
SciPost Phys. 12, 138 (2022) ·
published 22 April 2022
|
· pdf
We study a gas of attracting bosons confined in a ring shape potential pierced by an artificial magnetic field. Because of attractive interactions, quantum analogs of bright solitons are formed. As a genuine quantum-many-body feature, we demonstrate that angular momentum fractionalization occurs and that such effect manifests on time of flight measurements. As a consequence, the matter-wave current in our system can react to very small changes of rotation or other artificial gauge fields. We work out a protocol to entangle such quantum solitonic currents, allowing to operate rotation sensors and gyroscopes to Heisenberg-limited sensitivity. Therefore, we demonstrate that the specific coherence and entanglement properties of the system can induce an enhancement of sensitivity to an external rotation.
Submissions
Submissions for which this Contributor is identified as an author: