Paolo Molignini, Bastien Lapierre, Ramasubramanian Chitra, Wei Chen
SciPost Phys. Core 6, 059 (2023) ·
published 29 August 2023
|
· pdf
In 2D semiconductors and insulators, the Chern number of the valence band Bloch state is an important quantity that has been linked to various material properties, such as the topological order. We elaborate that the opacity of 2D materials to circularly polarized light over a wide range of frequencies, measured in units of the fine structure constant, can be used to extract a spectral function that frequency-integrates to the Chern number, offering a simple optical experiment to measure it. This method is subsequently generalized to finite temperature and locally on every lattice site by a linear response theory, which helps to extract the Chern marker that maps the Chern number to lattice sites. The long range response in our theory corresponds to a Chern correlator that acts like the internal fluctuation of the Chern marker, and is found to be enhanced in the topologically nontrivial phase. Finally, from the Fourier transform of the valence band Berry curvature, a nonlocal Chern marker is further introduced, whose decay length diverges at topological phase transitions and therefore serves as a faithful indicator of the transitions, and moreover can be interpreted as a Wannier state correlation function. The concepts discussed in this work explore multi-faceted aspects of topology and should help address the impact of system inhomogeneities.
Shouvik Datta, Bastien Lapierre, Per Moosavi, Apoorv Tiwari
SciPost Phys. 14, 108 (2023) ·
published 11 May 2023
|
· pdf
We study Tomonaga-Luttinger liquids thrown out of equilibrium by marginal deformations in the form of interaction modulations. This is modeled by quenching or periodically driving the Luttinger parameter or, equivalently, the compactification radius of the free boson conformal field theory between two different values. We obtain exact analytical results for the evolution of the Loschmidt echo and observables such as the particle and energy densities. Starting from generic initial states, the quench dynamics are shown to exhibit revivals and temporal orthogonalities. For the periodic drive, we show stability or instability of time-evolved physical quantities dependent on the drive parameters. We also compare the corresponding marginally deformed thermal density matrices by non-perturbatively evaluating their Rényi divergence as a Euclidean quench. All the dynamics are shown to be crucially dependent on the ratio of the Luttinger parameters, which corresponds to the Zamolodchikov distance in the space of marginal deformations. Our setup is equivalently interpreted as the dynamics of the bosonic string upon instantaneous changes of the target-space radius.
Kenny Choo, Bastien Lapierre, Clemens Kuhlenkamp, Apoorv Tiwari, Titus Neupert, Ramasubramanian Chitra
SciPost Phys. 13, 104 (2022) ·
published 4 November 2022
|
· pdf
We study the dissipative dynamics of a periodically driven inhomogeneous critical lattice model in one dimension. The closed system dynamics starting from pure initial states is well-described by a driven Conformal Field Theory (CFT), which predicts the existence of both heating and non-heating phases in such systems. Heating is inhomogeneous and is manifested via the emergence of black-hole like horizons in the system. The robustness of this CFT phenomenology when considering thermal initial states and open systems remains elusive. First, we present analytical results for the Floquet CFT time evolution for thermal initial states. Moreover, using exact calculations of the time evolution of the lattice density matrix, we demonstrate that for short and intermediate times, the closed system phase diagram comprising heating and non-heating phases, persists for thermal initial states on the lattice. Secondly, in the fully open system with boundary dissipators, we show that the nontrivial spatial structure of the heating phase survives particle-conserving and non-conserving dissipations through clear signatures in mutual information and energy density evolution.
Dr Lapierre: "Dear Editor, For ease of re..."
in Submissions | submission on Thermal and dissipative effects on the heating transition in a driven critical system by Kenny Choo, Bastien Lapierre, Clemens Kuhlenkamp, Apoorv Tiwari, Titus Neupert, Ramasubramanian Chitra